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ABSTRACT

The objective of this dissertation is to develop a computationally efficient rate-

dependent homogenization based continuum plasticity damage model for macroscopic

analysis of ductile failure in porous ductile materials containing brittle inclusions. The

macroscopic model developed in this dissertation is an extension of the model pro-

posed by Ghosh et al. [S. Ghosh, J. Bai, and D. Paquet. Homogenization-based

continuum plasticity damage model for ductile failure of materials containing het-

erogeneities. J Mech Phys Solids, 57:10171044, 2009]. The overall framework of

this rate-dependent HCPD model follows the structure of the anisotropic Gursen-

Tvergaard-Needleman(GTN) type elasto-plasticity model for porous ductile materi-

als. This model is assumed to be orthotropic in an evolving material principal coor-

dinate system throughout deformation history. The viscoplastic behavior is modeled

through an over-stress viscoplastic model. Anisotropy and viscoplastic parameters

in the rate-dependent HCPD model are calibrated from homogenization of evolv-

ing micro-variables in representative volume element (RVE) of the microstructure.

These parameters are dependent on microstructural features such as morphology and

distribution of different phases. Micromechanical analyses for this purpose are per-

formed by locally enhanced Voronoi cell finite element model (LE-VCFEM) [Hu, C.,

Ghosh, S., 2008. Locally enhanced Voronoi cell finite element model for simulating

evolving fracture in ductile microstructures containing inclusions. Int. J. Numer.
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Methods Eng. 76(12),1955-1992]. This work also introduces a novel rate-dependent

void nucleation criterion for the macroscopic damage evolution due to the combined

inclusion and matrix cracking happening in the underlying microstrucure of the RVE.

The results of the rate-dependent HCPD model are compared with the homogenized

micromechanics (LE-VCFEM) results and show excellent agreement.
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CHAPTER 1

INTRODUCTION

Metals and alloys containing heterogeneities e.g. particulates, precipitates, inter-

metallics, or voids in the microstructure are widely used in automotive, aerospace

among other engineering systems. Figure 1.1 shows the micrograph of a Al-Si-Mg

hypoeutectic cast aluminum alloy (AS7GU) used in the automotive industry. The mi-

crostructure comprises of (i) age-hardened aluminum matrix, strengthened by Mg/Si

and Si precipitates, and (ii) a dispersion of brittle silicon particulates in the ma-

trix. These heterogeneities can have adverse effects on failure properties like fracture

toughness and ductility, and hence the need for including the morphology and dis-

tribution of these inclusions in the numerical model. The spatial distribution of the

silicon inclusions and their morphology depends on the casting procedure used, and

especially on the rate of heat extraction [1]. The solidification process tends to push

particulates into the regions between the evolving secondary dendrite arms. The sil-

icon inclusions are pinned in location once the eutectic temperature is reached. The

secondary dendrite arm spacing (SDAS) of the microstructure depends on this solidi-

fication procedure. Cast alloys with small SDAS can be modeled readily, while alloys

with large SDAS need to be modeled using a unique two-stage homogenization tech-

nique detailed in [2]. Ductile failure happens through micromechanical mechanisms
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like particle fragmentation, interface debonding and matrix failure. Failure initiates

by particle cracking, after which voids grow near the crack tips and subsequently

coalesce to cause failure in the matrix. The nucleation and growth of the cracks are

sensitive to local morphological parameters and constitutive parameters as shown in

[3]. Damage evolution in microstructures are also sensitive to the applied strain rate

as discussed in [32]. It is computationally expensive, if not impossible to simulate

the entire microstructure with explicit representation of the heterogeneities, which

has led to the development of the macroscopic rate-dependent homogenization based

continuum plasticity damaged model. This macroscopic model has been designed to

incorporate the morphological characteristics of the underlying microstructure, while

saving computational time by working in a homogenized macroscopic scale.
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Figure 1.1: (a) Micrograph of a cast aluminum alloy AS7GU (120 µm × 96 µm), (b)
blow-up of the designated region in (a) (28.4 µm × 28.4 µm).
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1.1 Literature Survey

Various macroscopic constitutive models have been proposed to model heteroge-

neous material behavior and failure, based on morphological and phenomenological

approaches. Most of the phenomenological models propose tensor or scalar damage

variables whose evolution is governed by some evolution law, formulated from exper-

imental observations. The general use of these phenomenological models is impeded

by their lack of modeling the underlying physics and failure to explicitly account for

the microstructure characteristics. On the other hand, models that incorporate mor-

phological details solve boundary value problems of the representative volume element

(RVE) to predict constitutive response at the macroscopic level. There are various

analytical micromechanical models like those based on variational bounding methods

e.g. [4, 5] and those based on effective medium approximations [6, 7]. These methods

have limited capabilities for dealing with material nonlinearities, non-proportional

load histories and complex morphologies. Multi-scale computational homogenization

theories using asymptotic expansion [8, 9], where concurrent finite element analyses

are executed at macro- and micro-scales with information transfer between them have

been used for estimating averaged material properties of heterogeneous materials.

Ghosh and co-workers have combined the asymptotic homogenization method

with the Voronoi cell finite element method (VCFEM), operating at the micro-scale

for multi-scale analysis of deformation and damage in non-uniformly distributed mi-

crostructures in [10, 11, 12]. However, these approaches are computationally very ex-

pensive because of the detailed micromechanical analysis that needs to be performed

at every integration point of macroscopic elements. To overcome the shortcomings of
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simultaneous macro-micro modeling, [13] have developed the homogenization based

continuum plasticity-damage or HCPD model for ductile materials containing hetero-

geneities that are undergoing ductile failure with evolving porosity. The HCPD model

follows the Gurson-Tvergaard-Needleman or GTN models framework established in

[14, 15, 16, 17] that account for void nucleation, growth and coalescence. GTN mod-

els where matrix anisotropy has been characterized by Hill’s quadratic yield criterion

have been proposed in [18, 19]. Studies in [20] have shown that the yield surface of

porous materials with rigid inclusions retain the form of the GTN yield surface. This

dissertation deals with the extension of the constitutive model proposed in [13] into

a rate-dependent framework. A specific focus of this dissertation is the proposal of a

new and novel damage evolution law, which is also rate-dependent. This model can

be used effectively in the macroscopic simulation of ductile fracture in a multi-scale

framework, owing to the extremely reduced computational time while retaining the

morphological characteristics of the underlying microstructure.

1.2 Thesis Overview

The thesis is organized as follows. Chapter 2 introduces the computational tools

required for the development of the rate-dependent HCPD model. Major parts of

the rate-dependent HCPD model are described in Chapter 3. Chapter 4 describes

the procedure for calibration of the model parameters. Numerical validation and

examples are provided in Chapter 5 and Chapter 6 lists the scope for future work and

conclusion.

4



CHAPTER 2

TOOLS NEEDED FOR DEVELOPING THE
RATE-DEPENDENT HCPD MODEL

This chapter introduces the computational tools utilized in developing the rate-

dependent homogenization based continuum plasticity damage model. Each of the

sub-section explains breifly about a tool and refrences are provided for further under-

standing.

2.1 Indentification of the statistically equivalent RVE size

For the determination of the effective material properties of a microstructural

domain, e.g. the inter-dendritic region of Figure 1.1(b), identifying the microstruc-

tural statistically equivalent RVE or SERVE is very important. A SERVE may be

defined as the smallest volume element of the microstructure exhibiting the following

characteristics [21, 22]:

• Effective constitutive material properties in the SERVE should be equivalent to

properties of the entire microstructure, at least locally to within a prescribed

tolerance.
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• Distribution functions of parameters reflecting the local morphology, (local vol-

ume fraction, neighbor distance or radial distributions) in the SERVE should

be similar to those for the overall microstructure within a prescribed tolerance.

• SERVE should be independent of the location in the local microstructure as

well as of the applied loading direction.

Swaminathan et al. in [21, 22] have developed different techniques, like convergence of

elastic stiffness tensor, two point correlation for anisotropy etc. for determination of

SERVE size both without and with microstructural damage. The marked correlation

function, first introduced by Pyrz [23] was used in [13, 2] to establish the SERVE size

for porous ductile materials with a dispersion of heterogeneities. The marked correla-

tion function M(r) is a multivariate characteristic function of the microstructure that

relates any state variable (eg. stresses, strains or their dependent functions) with the

microstructural morphology and distribution. It is expressed as a ratio of the state

variable dependent function h(r) and the pair distribution function g(r) as:

M(r) =
h(r)

g(r)
(2.1)

where

h(r) =
1

2πr

dH(r)

dr
and H(r) =

1

m2

A

N2

N∑
i=1

ki∑
k=1

mimk(r) (2.2)

Here mi represents a mark associated with the i-th inclusion, r is a measure of the

radial distance of influence, mk(r) corresponds to the mark associated with the k-th

inclusion at a radial distance r and m is the mean of all marks. N is the total number

of inclusions within the area A of the microstructural domain being analyzed and ki

is the number of inclusions that have their center within a circle of radius r centered

at the i-th inclusion. The mark can be any chosen variable field in the microstructure

6



that has relevance the problem being pursued.The definition of the pair distribution

function g(r) in Equation (2.1) is given as

g(r) =
1

2πr

dK(r)

dr
and K(r) =

A

N2

N∑
k=1

Ik(r) (2.3)

The pair distribution function g(r) characterizes the occurance intensity of inter-

inclusion distances. Ik(r) is the number of inclusions excluding the one being con-

sidred that lie inside the circle of radius r. The definition of the second-order intensity

function K(r) is given in [21]. A high value of M(r) indicates a strong correlation

between entities in the microstructure. As discussed in [2, 13], M(r) provides a good

estimate of the size of the SERVE, for a local microstructure. It stabilizes to near-

unity values at a characteristic radius of convergence r0. For r ≥ r0, M(r) ≈ 1 and

the local morphology ceases to have any significant influence on the state variables

beyond this characteristic radial distance. The radius of convergence r0 provides a

good estimate for the SERVE size.

As discussed in [2, 21] ,a combination of three geometric parameters are used to

calculate the SERVE size of the microstructure. The mark mi associated with each

inclusion is defined as a weighted average of local area fraction (LAF), inverse near

neighbor distance (IND) and the number of near neighbors (NN) of that inclusion:

mk = w1S
k
1 + w2S

k
2 + w3S

k
3 (2.4)

with

Sk
1 =

(LAF )k

max
1≤j≤N

(LAF )j
; Sk

2 =
(IND)k

max
1≤j≤N

(IND)j
; Sk

3 =
(NN)k

max
1≤j≤N

(NN)j

7



where N is the total number of inclusions and (LAF )k, (IND)k, and (NN)k are the

local area fraction, the inverse of the near-neighbor distance, and the number of near-

neighbors of the k-th inclusion. Further details about calculating these quantities are

given in [2]. From the micrograph shown in Figure 1.1(b), the marked correlation

function in Equation (2.1) is calculated with the geometric mark of Equation (2.4).

Weights w1 = 1.0, w2 = 2.0 and w3 = 1.0 are used, as suggested in [21]. M(r) dis-

tributions are plotted in Figure 2.1(a), showing the convergence to M(r) = 1 with

varying r. In order to choose the tightest possible tolerance, the size of the SERVE

corresponding to different acceptable tolerances for convergence are evaluated in Fig-

ure 2.1(b). This analysis suggests r0 ≈ 7 µm based on the highest value for the two

regions using a tolerance of 1.75%. Correspondingly, the SERVE size is estimated as

LSERV E = 2× r0 = 14 µm.

In order to verify the location independence of the 14 µm SERVE, two differ-

ent SERVE’s are chosen from the microstructure and their respective homogenized

responses are compared in rate-independent shear loading. The SERVE boundaries

are created by periodically repeating the position of inclusions in the x and y direc-

tions, followed by drichlet tessellation [24, 25, 26]. The resulting SERVE’s with the

Voronoi cell mesh are shown in Figure 2.2. Their respective area fraction of inclu-

sions are 18.31% and 18.45%, which are very close to the overall area fraction of the

microstructural region of Figure 1.1(b) (18.62%). The elastic properties considered

for micromechanical simulations are ESi = 165 GPa and νSi = 0.27 for the inclusions

and EAl = 70 GPa and νAl = 0.32 for the matrix. The plastic hardening curve of

the matrix is shown in Figure 2.3 and the initial yield stress is σy = 88.5 MPa. The

8
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Figure 2.1: (a) Marked correlation function for two different windows A and B using
the mark of Equation (2.4), (b) radius of convergence r0 based on the results of (a)
as a function of the chosen tolerance.
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averaged macroscopic stress-strain response in shear for the two SERVE’s of Figure

2.2 is shown in Figure 2.4. The results for the two SERVE’s match very well with

each other. This justifies the choice of LSERV E = 14 µm and also proves the location

independence.

(a) (b)

(c) (d)

Figure 2.2: (a) Micrograph of the microstructural domain of SERVE A, (b) mi-
crograph of the microstructural domain of SERVE B, (c) SERVE A with periodic
boundary, (d) SERVE B with periodic boundary.
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Figure 2.3: Hardening (stress-strain) curve for the aluminum matrix used for com-
parison of macroscopic behavior in shear for SERVE A and SERVE B of Figure 2.2.
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Figure 2.4: Comparison of the averaged macroscopic stress-strain response in shear
of SERVE A and SERVE B of Figure 2.2.
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2.2 Homogenization of micromechanical variables in RVE
analysis

Development of the rate-dependent HCPD model requires evaluation of material

properties from homogenized stresses, strains and other state variables. The asymp-

totic expansion homogenization method has been developed in [8, 9] for homoge-

nized constitutive models of heterogeneous materials. Ghosh et al. have introduced

a novel implementation of the asymptotic homogenization method, coupling macro-

scopic analysis with micromechanical VCFEM analysis of the RVE, in [11, 12, 27, 28].

The asymptotic homogenization method is implemented in conjunction with microme-

chanical elastic-plastic damage analysis of the RVE Y by LE-VCFEM in [13], which

is used in the present work. The incremental form of the homogenized macroscopic

stress-strain relation ∆Σij = EH
ijkl∆ēkl is obtained by volume averaging stresses and

strains over the RVE. For this, the LE-VCFEM generated microstructural variables

are integrated as:

Σij =
1

Y

∫
Y

σϵ
ij(y)dY

ēij =
1

Y

∫
Y

eϵij(y)dY (2.5)

where σϵ
ij and eϵij are the microscopic stress and strain tensor in the RVE. EH

ijkl is

the homogenized elastic-plastic tangent modulus in the macroscopic constitutive law.

Additionally, the rates of macroscopic void volume fraction (f) and plastic work (Wp)

are defined as

˙̄f =
1

Y

∫
Y

ḟ ϵ dY, Ẇp =
1

Y

∫
Y

σϵ
ij ė

ϵp
ij dY (2.6)

where eϵp is the microscopic plastic strain tensor in the RVE. For plane strain prob-

lems, components of EH
ijkl can be obtained by averaging stress increments in response

12



to three separate imposed unit macroscopic strains increments ∆ēij and solving

the boundary value problems for the RVE. Details of this process can be found in

[11, 12, 27, 28].

2.3 Locally enhanced voronoi cell finite element model (LE-
VCFEM)

Solutions of the micromechanical boundary value problem in the SERVE are nec-

essary to provide data for the asymptotic expansion homogenization described in

Chapter 2.2. The Voronoi locally enhanced cell finite element method or LE-VCFEM,

developed by Ghosh et al. [29, 30, 31, 32] readily provides an accurate and extremely

efficient means for micromechanical analysis of deformation and failure in arbitrary

heterogeneous microstructures. Morphological non-uniformities in the heterogenities,

like orientations, shapes, and sizes of inclusions are conveniently modeled by this

method. In [32, 33] the VCFEM model has been extended for rate-dependent elastic-

viscoplastic porous ductile material. Micromechanical analysis in the present paper

uses the VCFEM model in [32, 33]. The inclusions are linear elastic, while the matrix

constitutive relations follow the over-stress viscoplastic model model of Perzyna [34].
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CHAPTER 3

RATE-DEPENDENT HOMOGENIZATION BASED
CONTINUUM PLASTICITY DAMAGE MODEL

The rate-dependent homogenization based continuum plasticity damage model

framework is based on the anisotropic Gurson-Tvergaard-Needleman model follow-

ing the developements of [18, 19], with the rate-dependency modeled through an

over-stress model as described in [32, 2]. The tools described in Chapter 2, namely

asymptotic expansion homogenization (AEH), LE-VCFEM are used in the develop-

ment of this model.

In this constitutive model, the total strain rate is assumed to be additively de-

composed into an elastic and viscoplastic part as:

ė = ėe + ėp (3.1)

For small elastic strains, the rate of Cauchy stress Σ̇ is related to the elastic part of

the strain rate tensor as:

Σ̇ = Ce : ėe (3.2)

whereCe is a fourth order anisotropic elasticity tensor. The anisotropic yield function

for the porous ductile materials containing inclusions is expressed in terms of the

14



deviotoric and hydrostatic components of stress tensor as:

ϕ =
Σ2

eq

Y 2
f (Wp)

+ 2Q1f cosh

(
3Q2

2

Σhyd

Yf (Wp)

)
− 1− (Q1f)

2 ≥ 0 (3.3)

where Σeq and Σhyd are the homogenized equivalent and hydrostatic stress respectively

and f is the macroscopic void volume fraction. The homogenized equivalent stress

is defined in the Equation (3.11) and the hydrostatic stress is Σhyd = Σ1+Σ2+Σ3

3
.

Yf is the homogenized yield stress of the heterogenous material without any voids,

expressed as a function of the inelastic workWp. The effect of strain work-hardening is

incorporated by this yield strength Yf (Wp), whose functional form is determined from

the homogenization process. The parameters Q1 and Q2 govern the void evolution in

the macroscopic model and are calibrated from the homogenization of the response of

the RVE. In case of rate-independence, the Equation (3.3) becomes ϕ = 0. The rate-

dependency is modeled with the over-stress viscoplastic model developed in [34]. In

this model, the viscoplastic strain rate and the rates of plastic work and void volume

fraction are expressed as:

ėp = Λ̇N,N =
∂ϕ⋆

∂Σ
(3.4)

where ϕ⋆ is given by Equation 3.9.

ḟ = ḟgrowth + ḟnucleation (3.5)

Ẇp = Σ : ėp (3.6)

The homogenized void growth law is the same as the one used in [13] and is given

by ḟgrowth = (1− f)ėpkk, which results from plastic incompressibility of the underlying

matrix without voids. The void nucleation law, ḟnucleation is one of the highlights of

this dissertation and is explained in detail in Chapter 3.2. In Equations (3.4) , (3.5)
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and (3.6) , Λ̇ is the macroscopic viscoplastic multiplier. Λ̇ is obtained by assuming

that the Hill-Mandel micro-macro energy condition [35] governs the homogenization

conditions for the porous ductile materials. The rate of dissipative energy in the

porous matrix material with incusions can be expressed as:

Σ : ėp = (1− f)σ⋆ ˙̄ϵp = λ̇(1− f)σ : ϵp (3.7)

where σ⋆ is the effective stress and ˙̄ϵp is the effective plastic strain rate in the matrix

with incusions in the absence of voids. σ and ϵp are the stress and strain tensors

in the matrix with incusions in the absence of voids. The viscoplastic multiplier

in the matrix with inclusions in the absence of voids is λ̇ = Γ0Φ(F ). Here, Γ0 is

the temperature dependent viscocity co-effecient. In [34] a power law expression, i.e.

Φ(F ) = ⟨F ⟩P has been discussed to adequately represent the behavior of most metals.

⟨ ⟩ is the MacCauley operator corresponding to the positive sign of the argument.

The over-stress F is a measure of the excess stress over the rate-independent local

yield strength Yf (an internal state variable), i.e.

F = Σ⋆ − Yf (Wp) (3.8)

where Σ⋆ = σ⋆ and can be obtained by setting

ϕ⋆ =
Σ2

eq

(Σ⋆)2
+ 2Q1f cosh

(
3Q2

2

Σhyd

Σ⋆

)
− 1− (Q1f)

2 = 0 (3.9)

From the constitutive model discussed in [2] for non-porous matrix with inclusions,

the effective plastic strain rate in matrix with inclusions in the absence of voids is

derived as ˙̄ϵp = λ̇. From Equation (3.7) and (3.4) we can obtain the expression for

the macroscopic viscoplastic multiplier, Λ̇ as:

Λ̇ =
(1− f)Σ⋆

Σ : N
Γ0Φ(F ) (3.10)
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The set of Equations (3.1)-(3.6), (3.8)-(3.10) form the constitutive model for the

rate-dependent macroscopic simulation of porous ductile material with inculsions, i.e.

the rate-dependent HCPD model. The entire constitutive model described above is

expressed in an evolving principal material co-ordinate system or PDCS, which takes

care of the evolving anisotropy. This unique feature of the model is explained below.

3.1 Evolving Anisotropy

As discussed in [13, 2], initial macroscopic material anisotropy is due to the pres-

ence of heterogeneities, e.g. brittle inclusions, in the microstructure. Furthermore,

this anisotropy evolves with deformation due to nonuniform and constrained plas-

tic flow in micro-channels between heterogeneities. The equivalent stress Σeq in the

expressions (3.3) and (3.9) is designed to accommodate both initial and evolving

anisotropy. For plane strain problems, it is expressed using the 3D anisotropic yield

function in Hill [36] as:

Σ2
eq = F (Σ22 − Σ33)

2 +G(Σ33 − Σ11)
2 +H(Σ11 − Σ22)

2 + CΣ2
12 (3.11)

The stress components (and other tensor variables) in the constitutive model are

represented in the principal axes of material anisotropy. The material is assumed

to remain orthotropic in this system throughout the deformation process. The use

of this material coordinate system has been shown in [13] to capture the effects of

non-proportional load and deformation histories with very good accuracy. The angle

β, delineating the principal axes of anisotropy for plane strain analysis, is determined

in every increment from the condition that the transformed tangent modulus (Etan
ijkl )

′

in this system remains orthotropic. This condition renders the terms coupling normal
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and shear components of the tangent modulus to be equal to zero, i.e.

(Etan
1112)

′
= (Etan

2212)
′
= (Etan

3312)
′
= 0, (3.12)

where (Etan
ijkl )

′
= QimQjnQkpQlqE

tan
mnpq and

[Q] =

 cosβ sinβ 0
−sinβ cosβ 0

0 0 1


Anisotropy parameters F, G, H, and C in Equation (3.11) are calibrated with respect

to this principal coordinate system from homogenization. These parameters evolve

due to the constrained plastic flow resulting from the presence of heterogeneities.

3.2 Rate-Dependent Void Nucleation Criterion

Ductile failure initiates with inclusion fragmentation and is followed by void evo-

lution in the matrix. This microstructural mechanism manifests in the macroscopic

rate-dependent HCPD model as void nucleation. The void nucleation model being

developed in this dissertation is based on the work done by Ghosh et al. [13], where

a strain-based rate-independent nucleation law is proposed and is proved to offer ex-

cellent agreement with the micromechanics VCFEM results. As discussed in [3, 32],

the morphology and distribution of inclusions is exceedingly significant in governing

the damage propogation in a porous ductile material with heterogenities. Damage

evolution is highly anisotropic as shown in Figure 3.1 and the void nucleation model

proposed in this dissertaion allows for the representation of this anisotropy with ease.

In addition to the morphological characteristics, the loading rate also plays a sig-

nificant role in the damage evolution in the microstructure. Paquet et al. [32, 33]

have conducted a sensitivity study of the ductile fracture with respect to the load-

ing rates and have concluded that the applied strain rates play an important role
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on the ductile fracture of rate-sensitive heterogenous materials. As the strain rate

increases, the stress in the inclusions are much higher than for lower strain rates,

which results in the incusions cracking at a much lower strain. In addition to this,

the matrix phase undergoes lower plastic deformation at higher strain rates, therefore

reducing void growth and localization of damage near cracked inclusions. Strain to

failure is thus determined by the competition between the two effects. This effect of

rate-dependency is also included in the proposed void nucleation model.
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Figure 3.1: Anisotropy in damage evolution corresponding to mutually perpendicular
loading of RVE 1 in Figure 4.3(a)

As in [13], the void nucleation model is based on the Weibull statistics-based

probability of fracture P̄fr, which is parallel to the probability governing the cracking

of inclusions in the microstructure as detailed in [13, 32]. The probablity function
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P̄fr is written in terms of local strains as:

P̄fr(v, ê) = 1− exp

[
− v

v0

(
ê

eo

)m]
(3.13)

where e0 and m are the Weibull parameters, which are functions of local strain rate

˙̂e. ê is an effective strain measure expressed as:

ê = ⟨Ae1 +Be2 + Ce3⟩ (3.14)

where e1,e2 and e3 are the local principal strains and ⟨ ⟩ is the MacCauley operator

corresponding to the positive sign of the argument. A,B and C are parameters that

are calibrated from micromechanics VCFEM analysis of the RVE. The co-effecients

A,B and C are functions of the angle of principal strain θp and provide an effecient

method for modeling the damage anisotropy emerging from morphology and distribu-

tion of inclusions in the microstructure. A new state variable, area fraction of cracked

particles ρ is introduced to acomodate instantaneous variations in local strain rates.

The area fraction of cracked inclusions for constant strain rate deformation ρc(ê) is

expressed in terms of the probability density function of the inclusion size p(v) and

the probability of fracture P̄fr(v, ê) as:

ρc(ê) =

∫ ∞

0

v

v0
p(v)P̄fr(v, ê)dv (3.15)

If a discrete distribution of inclusions in a limited size RVE is to be considered, The

probability density function p(v) can be written as

p(v) =
N∑
i=1

δ(v − vi)p(vi) (3.16)

where δ() is the dirac delta function and N is the number of bins in the probability

density function p(v). Using Equation (3.16) in (3.15) gives:

ρc(ê) =

∫ ∞

0

v

v0

[
N∑
i=1

δ(v − vi)p(vi)

]
P̄fr(v, ê)dv
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ρc(ê) =
N∑
i=1

∫ ∞

0

v

v0
[δ(v − vi)p(vi)] P̄fr(v, ê)dv

and can be simpified to

ρc(ê) =
N∑
i=1

vi
v0
p(vi)P̄fr(v, ê)

ρc(ê) =
N∑
i=1

vi
v0
p(vi)

(
1− exp

[
− vi
v0

(
ê

eo

)m])
(3.17)

where p(vi) is the probability of finding a inclusion of size vi. If all the particles have

the same size, i.e. p(v) = 1, the area fraction of cracked inclusion can be derived from

Equation (3.17) as

ρc(ê) = 1− exp

[
−
(

ê

eo

)m]
(3.18)

The evolution of the state variable, area fraction of cracked particles ρ is governed by

the equation

ρ̇ =
dρc(ê)

dê
˙̂ek̃⋆ (3.19)

Finally, the void nucleation for the rate-dependent HCPD model is given as

ḟnucleation = Vp
dρc(ê)

dê
˙̂ek̃⋆ (3.20)

where

k̃ =
1− ρ

1− ρc(ê)
, k̃⋆ =

{
k̃ if k̃ ≥ 1

0 if k̃ < 1
(3.21)

where k̃⋆ is a factor that takes care of the instantaneous change in strain rates. When

there is an increase in local strain rate, the stress in the particles of the underlying

microstructure increases and more particles start cracking. In order to incorporate

this effect, the factor k̃ is included in the void nucleation law to increase the nucleation

of voids and bring it up to the actual value, as shown in Figure 3.2. When the local

strain rate decreases, all the particles that will crack eventually have already cracked
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(because of the higher stress in higher strain rates) and therefore no nucleation is

necessary till the appropriate value is reached, as shown in Figure 3.3. The value

ρc(ê) in the denomenator of Equation (3.21) is the area fraction of cracked particles

at constant strain rate and is obtained from Equation (3.17) or (3.18). The parameter

Vp in Equation (3.20) is calibrated from the volume fraction of cracked inclusions at

given strain. The calibration procedure for the parameters e0, m, Vp, A, B and C is

detailed in Section 4.5.
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Figure 3.2: Area fraction of cracked inclusions ρ as a function of the principal strain
e1 of RVE 1 in Figure 4.3(a) for an instantaneous change in loading strain rate from
0.75 s−1 to 0.25 s−1

3.3 Numerical implementation of the rate-dependent HCPD
model

The numerical implementation of the macroscopic rate-dependent HCPD model

follows the return mapping algorithm for rate-dependent plasticity developed in [37].
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Figure 3.3: Area fraction of cracked inclusions ρ as a function of the principal strain
e1 of RVE 1 in Figure 4.3(a) for an instantaneous change in loading strain rate from
0.25 s−1 to 0.75 s−1

The return mapping algorithm consists of an initial elastic predictor step, where the

elastic response is assumed and the stresses are predicted. This is followed by the

plastic corrector step which returns the stress to the updated yield surface. The

numerical stress update algorithm is programmed in fortran and is used with MSC

Marc through the Uvscpl() subroutine.
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CHAPTER 4

CALIBRATION OF RATE-DEPENDENT HCPD MODEL
PARAMETERS

The rate-dependent HCPD model parameters are calibrated from homogenized

quantities such as macroscopic strain e, plastic strain ep, stress Σ and plastic work

Wp obtained from asymptotic expansion homogenization (AEH) of micromechanical

variables from LE-VCFEM simulations. The parameters are calibrated in the mate-

rial principal coordinate system following the procedure outlined for rate-independent

materials in [13]. These are discussed next. The calibration procedure for the param-

eters of the void nucleation model is described in 4.5

4.1 Yf(Wp) and C in Equations (3.3, 3.11)

The flow stress in shear, Yf (Wp) describes the hardening behavior of the homog-

enized material. In order to calibrate the evolution of Yf (Wp), a rate-independent

LE-VCFEM based micromechanical RVE analysis is conducted for shear deforma-

tion, with exx = eyy = 0, exy ̸= 0. The matrix material is assumed to be void free

and no inclusion fragmentation is allowed. Micromechanical analysis is followed by

homogenization, in which the macroscopic plastic work, stresses and strains are eval-

uated from the microstructural variables using equations (2.5) and (2.6). For pure
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shear loading, the resulting macroscopic tensor is of the form Σxx = Σyy = Σzz = 0

and Σxy ̸= 0. From the Equations (3.3) and (3.11), the yield stress is calculated as

Yf (Wp) =
√
3Σxy (4.1)

where the parameter C in equation (3.11) is set to 3. The yield stress Yf is plotted

as a function of Wp in figure 4.1.
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Figure 4.1: Yield stress in shear Yf for the SERVE A shown in Figure 2.2(c)

4.2 Parameters F,G and H in equation (3.11)

For a given RVE, like the one shown in Figure 2.2(c) , micromechanical LE-

VCFEM simulations are performed for N different loading conditions, followed by

homogenization. As with the calibration of Yf , the simulations are rate-independent

and no void evolution or inclusion cracking is allowed. Loading conditions are pre-

scribed with different macroscopic strain ratios exx : eyy : exy. A total of 18 different
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loading conditions are used to calibrate the anisotropy parameters. At the end of

each strain increment, the tangent stiffness Etan
ijkl is evaluated and subsequently the

material principal co-ordinate system is determined from Equation (3.12). Macro-

scopic stress tensor Σ and plastic work Wp are computed in the principal coordinate

system using equations (2.5) for each load step. For a given value of plastic work

Wp, the Yf (Wp) is obtained from the evolution curve such as Figure 4.1. This is

done for all the load histories. The plastic work dependent anisotropy parameters

F (Wp), G(Wp), H(Wp) are then evaluated minimizing the least square residual of

the rate-independent form of the Equation (3.11) as:

min
F,G,H

N∑
i=1

[F (Σi
22 −Σi

33)
2 +G(Σi

33 −Σi
11)

2 +H(Σi
11 −Σi

22)
2 +C(Σi

12)
2 − (Y i

f )
2]2 (4.2)

For a given value of Wp, N = 18 points corresponding to the 18 different loadings are

used. The parameters F, G, H are solved by an iterative algorithm with C = 3. The

step is repeated for different values of Wp to obtain the evolution curves for F,G and

H as a function of Wp. The evolution of the anisotropy parameters F,G and H for the

RVE in Figure 2.2(c) is shown in Figure 4.2. While F and G reduce nonlinearly with

Wp, H increases with Wp. More study on the evolution of the anisotropy parameters

in different RVE’s has been done in [13]. This study shows that relatively isotropic

microstructures have F ≈ G and pronounced anisotropy results in F ̸= G.

4.3 Viscoplastic parameters Γ0 and p in Equation (3.10)

The homogenized viscoplastic properties in the rate-dependent HCPD model are

calibrated from a set of loading conditions combining M applied strain rates for N

different imposed strain ratios exx : eyy : exy. These simulations are done subject to

zero initial void in the matrix, no void evolution and no particle cracking. At each
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Figure 4.2: Evolution of anisotropy parameters F,G and H with plastic work for
SERVE A shown in Figure 2.2(c)

increment, the principal coordinate system, the stress tensor Σ and the plastic work

Wp are computed. The corresponding yield stress Yf (Wp) and anisotropy coefficients

F (Wp), G(Wp), H(Wp) are evaluated using the previously calibration results from

Sections 4.1 and 4.2. The macroscopic viscoplastic properties are obtained by min-

imizing the square of the error between micromechanical analyses and macroscopic

simulations using the rate-dependent HCPD model of Chapter 3, with the void nu-

cleation and growth parts turned off. The error is defined as the Frobenius norm of

the stress difference:

min
γ0,P

N∑
i=1

M∑
j=1

Ki∑
k=1

||Σijk
macro −Σijk

micro||2F (4.3)

where Ki is the number of applied increments in the simulations corresponding to the

i-th load path. For the calibration of viscoplastic parameters, four different strain
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rates in shear are applied, i.e. N = 3 and M = 4. The applied strain rates are

ė
(1)
xy = 0.01 s−1, ė

(2)
xy = 0.03 s−1, ė

(3)
xy = 0.06 s−1 and ė

(4)
xy = 0.10 s−1.

4.4 Parameters Q1 and Q2 in Equation (3.3)

The parameters, Q1 and Q2, which govern the void evolution in the macroscopic

rate-dependent HCPD model are calibrated from a set of micromechanical simula-

tions, now with void evolution enabled. Homogenization is performed on these mi-

cromechanical simulations for evaluating the coefficients Q1 and Q2 in Equation (3.3).

The following steps are undertaken for this objective.

1. An rate-independent LE-VCFEM simulation of the RVE is conducted with an

applied macroscopic shear strain, exx = 0 : eyy = 0 : exy ̸= 0 for plastic

deformation and void evolution. The corresponding macroscopic stress tensor

Σ and averaged void volume fraction f are evaluated and plotted as functions of

the averaged matrix plastic workWp. These averaged macroscopic quantities are

obtained from homogenization as defined in Equation (2.6). Since the normal

stresses Σxx = Σyy = Σzz = 0 for this loading, and also the hydrostatic part of

plastic strain epkk = 0, the void volume fraction does not change, i.e. f = fo.

The parameter Q1 can be solved from the Equation (3.3) as:

Q1 =
1

fo
(1−

√
3Σxy

Yf

) (4.4)

2. The same set of numerical simulations as in Section (4.2) is again performed

for the microstructural RVE with non-zero, evolving void volume fractions. For

a given value of plastic work Wp, the parameter Q2 is evaluated from known
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values of F,G,H , Yf and Q1 by solving the minimization problem

min
Q2

N∑
i=1

[
Σ2

eq

Y 2
f

+ 2Q1f cosh

(
3Q2

2

Σhyd

Yf

)
− 1− (Q1f)

2

]2

(4.5)

where N = 18 is the total number of loadings.

(a) (b)

Figure 4.3: (a) RVE 1 with hardcore distribution, (b) RVE 2 with equal sized elliptical
inclusions.

It has been shown by Ghosh et al. [13] that the calibrated values of Q1 and Q2 for

the different RVEs exhibit only minimal dependence on plastic work and hence can be

taken as constants. The mean and standard deviation of Q1 and Q2 for the two RVEs

of Figures 4.3(a) and 4.3(b) are listed in Table 4.1. The standard deviations of Q1 and

Q2 are very small compared to the mean values. and hence Q1 and Q2 for each RVE

are taken as constants in the analyses, as concluded in [13]. The parameters Q1 and

Q2 depend on the RVE they are calibrated from. The Q1 values are quite different

from the value in the pure matrix material (q1=1.5). This difference is attributed to

the effect of the inclusion volume fraction Vf . A sensitivity study has been conducted

by Ghosh et al. [13] to relate the effect of the microstructure on the values of Q1
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and Q2. It has been identified that Q1 and Q2 have sole dependence on the volume

fraction Vf of heterogeneities in the microstructure.

Mean of Q1 Standard Dev. of Q1 Mean of Q2 Standard Dev. of Q2

RVE 1 1.70 0.0065 1.04 0.0179
RVE 2 1.77 0.0026 1.09 0.0064

Table 4.1: Mean and standard deviation of calibrated parameters Q1 and Q2 for
different RVEs

4.5 Calibration of parameters in the void nucleation model

The calibration of parameters for the rate-dependent void nucleation criterion can

be split into two distinct steps. The first step involves the calibration of the local

strain-rate dependent parameters e0 and m in the Equations (3.17) and (3.18). The

second step involves the calibration of parameters A,B and C in Equation (3.14),

which take care of the anisotropy in damage evolution due to the morphology and

distribution of the inclusions. These parameters A,B and C are functions of the

angle of principal strain θp. Rate-dependent LE-VCFEM simulations with void evo-

lution and inclusion cracking along with the rate-dependent HCPD model analyses

are conducted for calibrating all the required parameters.

4.5.1 e0 and m calibration

The parameters e0 and m in the Equations (3.17) and (3.18), defining the area

fraction of cracked particles ρ(e) are functions of local strain rate. These two param-

eters govern the rate-dependency of damage evolution. In order to calibrate e0 and

m, a total of K micromechanical LE-VCFEM simulations with strain rates spread

30



between the required range for the macroscopic HCPD model are performed. For

the RVE 1 shown in Figure 4.3(a), a total of 10 LE-VCFEM simulations with strain

rates between 0.01 s−1 and 0.75 s−1 were performed. All of the micromechanical

simulations required for the calibration of e0 and m are performed under an applied

macroscopic strain ratio exx ̸= 0 : eyy = 0 : exy = 0. For each of the K microme-

chanical simulations, e0 and m are calculated, so that a best fit is obtained between

the Equation (3.17) or (3.18) and micromechanics results for the area fraction of

cracked particles. Figure 4.4 shows the micromechanics result for the area fraction

of cracked particles at an applied strain rate of 0.1 s−1 as a function of the princi-

pal strain e1 for the RVE 1 in Figure 4.3(a) along with the fitted curve of Equation

(3.18) for the values e0 = 0.009739 and m = 3.11. For this applied strain ratio of

exx ̸= 0 : eyy = 0 : exy = 0, the effective strain is, ê = Ae1 and the parameter

A(θp = 0◦) = 1.

Once the calibration has been completed for all the K applied strain rates, the

functional forms for the parameters e0 andm can be obtained as a function of the local

strain rate ˙̂e. Figure 4.5 and 4.6 show the discrete calibrated values and the functional

fit for the parameters e0 and m calibrated from the RVE 1 in Figure 4.3(a). It can

be observed in the Figure 4.5 and 4.6 that there are two distinct mechanisms taking

place due to the rate-dependency. At lower strain rates, along with particle cracking,

voids start to nucleate near the tip of the cracked inclusions and subsequently coalase

to cause matrix failure in the microstructure. This results in damage localization and

failure of the material. On the other hand, at higher strain rates, the matrix starts

to behave more elastic and therefore the void nucleation in the matrix and growth is

reduced and no localization of damage happens in the microstructure.
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4.5.2 A, B and C calibration

In order to calibrate the anisotropy parameters A,B and C, a total of four LE-

VCFEM simulations at any strain rate, chosen between the limits used in Section

4.5.1 are needed. The four simulations with different loading conditions are

1. Tension tests in the y directions, with zero transverse strains (exx = 0 : eyy ̸=

0 : exy = 0),

2. Biaxial tension test (exx = eyy ̸= 0 : exy = 0),

3. Two simulations with strain ratios (exx > 0 : eyy < 0 : exy = 0) and (exx < 0 :

eyy > 0 : exy = 0)

The anisotropy parameters A,B and C have the functional form of an ellipse, and

at any given angle of principal strain θp, the value of A,B or C is the radius of the
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ellipse. In the Section 4.5.1, the radius of the ellipse describing the parameter A at

θp = 0◦ is assumed to be 1. This value A(θp = 0◦) = 1 is one of the axes of the

ellipse describing A. The other axis of the ellipse is obtained from the y direction

constrained tension test (1). For the RVE 1 shown in Figure 4.3(a) , the area fraction

of fractured inclusion ρ is plotted as a function of the principal strain e1 in Figure 4.7.

In this constrained y loading condition, value of A at θp = 90◦ is evaluated by fitting

either Equation (3.17) or (3.18) with the micromechanics result shown in Figure 4.7.

The value of e0 and m at the effective strain rate ˙̂e are obtained from the functional

forms calibrated in the Section 4.5.1. Figure 4.8 shows the functional form of the

parameter A as a function of the angle of principal strain θp.
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Figure 4.7: Area fraction of cracked inclusions for the y direction constrained tension
LE-VCFEM analysis of RVE 1 shown in Figure 4.3(a) at a strain rate of 0.1 s−1 along
with the fit of Equation (3.17)
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Similar to A, the major and minor axes of the ellipse describing the parameter B

can be obtained from the biaxial tension test (2). Since for the biaxial tension test,

the angle of principal strain θp = 0◦ or 90◦, only one of the axes of the ellipse needs

to be determined. If the angle of principal strain is taken as θp = 0◦, then A(θp) = 1

and the effective strain is ê = Ae1+Be2. Once again, either Equation (3.17) or (3.18)

is fit with the micromechanics result for area fraction of cracked particles to evaluate

the value of B at θp = 0◦. The other axis of the B-ellipse can be obtained as

B(θp = 90◦) = [A(θp = 0◦) +B(θp = 0◦)− A(θp = 90◦)]

The other two loading conditions, (exx > 0 : eyy < 0 : exy = 0) and (exx < 0 : eyy >

0 : exy = 0) are used to calibrate the major and minor axis of the elliptical form of the
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parameter C. The values of A,B and C for the RVEs 1 and 2 shown in the Figure

4.3 are given in the Table 4.2

A(θp = 90◦) B(θp = 0◦) B(θp = 90◦) C(θp = 0◦) C(θp = 90◦)
RVE 1 1.45 1.51 1.06 0.90 1.34
RVE 2 1.28 1.39 1.10 0.96 1.10

Table 4.2: Values of anisotropy parameters A,B and C at different angles of principal
strain θp. The value of A(θp = 0◦) = 1 for all RVEs

Subsequently the parameter Vp, which relates the volume fraction of cracked in-

clusions to the void nucleation rate in the rate-dependent HCPD model, is evaluated

iteratively from several macroscopic numerical analyses, by minimizing the difference

between the micromechanical and HCPD simulations :

min
Vp

N∑
i=1

Mi∑
j=1

||Σij
HCPD −Σij

micro||2F (4.6)

where N is the total number of simulations performed for the calibration of Vp and

Mi is the number of increments in the ith micromechanical simulation.
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CHAPTER 5

NUMERICAL EXAMPLES WITH THE
RATE-DEPENDENT HCPD MODEL

The rate-dependent HCPD model is validated by comparing the results of the

macroscopic finite element simulations with those obtained from the homogeniza-

tion of the micromechanics LE-VCFEM results. An extensive validation of rate-

independent HCPD model has been performed in [13], demonstrating the capability

of the model for various proportional and non-proportional loading conditions. Since

this rate-dependent HCPD model is an extension of the model proposed in [13], only

the rate-effects and the novel rate-dependent void-nucleation model is validated and

demonstrated in this dissertation. All of the macroscopic simulations were conducted

in the commercial MSC Marc code, with a single QUAD4 element with 4 integration

points. The material properties considered for the micromechanics simulations are:

Ductile matrix: Young’s modulus, E = 72 GPa, Poisson’s ratio ν = 0.22 and

initial void volume fraction f0 = 0.01. The post yield behavior for the matrix material

without voids is governed by the yield curve shown in Figure 5.1. The yield stress is

175 MPa.

Brittle SiC inclusions: Young’s modulus, E = 320 GPa, Poisson’s ratio ν = 0.25.
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Figure 5.1: Hardening (stress-strain) curve for the aluminum matrix used for the
micromechanics LE-VCFEM simulations of RVE 1 in Figure 4.3(a)

5.1 Viscoplastic response and void growth model

The RVE 1 shown in Figure 4.3(a), with 25 non-uniform elliptical inclusions of

10% volume fraction is used to validate the viscoplastic response of the macroscopic

HCPD model, with and without void evolution. Four different micromechanics LE-

VCFEM simulations with imposed shear loading, subject to different loading strain

rates and initial void volume fraction f0 are conducted. The homogenized shear stress

Σxy from the micromechanics simulations are compared to the macroscopic stress

components, from HCPD simulations in Figure 5.2 and show excellent agreement.

Homogenized results from the LE-VCFEM simulation of the same RVE 1 subject to

a strain ratio of exx ̸= 0 : eyy = 0 : exy = 0 at a strain rate of 0.25 s−1 along with the

HCPD macroscopic stress components are show in Figure 5.3. From both the shear
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and restricted tension tests, excellent agreement can be observed between the HCPD

model and the homogenized micromechanics solutions.
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Figure 5.2: Macroscopic stress-strain response of the HCPD model and the homoge-
nized micromechanical solutions for RVE 1 in Figure 4.3(a)

5.2 Void nucleation model

The void nucleation model is validated by simulating RVE 1 shown in Figure

4.3(a), with 25 non-uniform elliptical inclusions of 10% volume fraction. The plastic-

ity parameters of this RVE is calibrated following the procedure described in Section

4.1 - 4.4. The nucleation parameters e0,m,A,B and C are calibrated following the

procedure described in Section 4.5. The functional fit of the local strain rate de-

pendent parameters e0 and m for the RVE 1 is shown in Figure 4.5 and 4.6. The

major and minor axes of the ellipses describing the damage anisotropy parameters

A,B and C are given in Table 4.2. In order to validate the rate-dependent behavior
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Figure 5.3: Macroscopic stress-strain response of the HCPD model and the ho-
mogenized micromechanical solution for RVE 1 in Figure 4.3(a) for strain ratio
exx ̸= 0 : eyy = 0 : exy = 0

of the nucleation model, four micromechanics LE-VCFEM simulations with RVE 1

are conducted, they are

1. Tension test in x direction with zero transverse strains (exx ̸= 0 : eyy = 0 : exy =

0) at a loading strain rate of 0.25 s−1

2. Tension test in x direction with zero transverse strains (exx ̸= 0 : eyy = 0 : exy =

0) at a loading strain rate of 0.75 s−1

3. Tension test in x direction with zero transverse strains (exx ̸= 0 : eyy = 0 : exy =

0) at an initial loading strain rate of 0.25 s−1, which is increased to 0.75 s−1 at

0.6% of the applied strain.
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4. Tension test in x direction with zero transverse strains (exx ̸= 0 : eyy = 0 : exy =

0) at an initial loading strain rate of 0.75 s−1, which is decreased to 0.25 s−1 at

0.6% of the applied strain.

The homogenized responses of the micromechanics simulations stated above is com-

pared with their respective macroscopic rate-dependent HCPD model simulation re-

sults in Figures 5.4 and 5.5 and show very good agreement. For both macroscopic

and LE-VCFEM simulations, the Von-Mises stress is plotted as a function of the ap-

plied strain. The micromechanics simulations show discrete drops in stress due to the

inclusions cracking, however the macroscopic model does not exhibit this behavior

due to the continuous function used in the nucleation model. The evolution of the

area fraction of the inclusions cracked ρ when there is an instantaneous change in

strain rate from 0.25 s−1 to 0.75 s−1 is show in Figure 3.2 and ρ when there is an

instantaneous change in strain rate from 0.75 s−1 to 0.25 s−1 is show in Figure 3.3.

The factor k̃⋆ in Equation 3.19 takes care of the instantaneous change in local strain

rate, accelerating and stalling the nucleation as required.

The ability of the nucleation model to capture material anisotropy in damage is

validated by comparing the homogenized response from different micromechanics LE-

VCFEM simulations subject to different loading conditions with their corresponding

macroscopic HCPD response. Simulations are conducted for a number of applied

macroscopic strain ratios (exx : eyy : exy) at an applied strain rate of 0.1 s−1. The

values of parameters A,B and C are obtained from the calibrated elliptical forms

at the angle of principal strain corresponding to the local strains. The Comparison

between the micromechanics result and the rate-dependent HCPD model results are

shown in Figure 5.6 and show good agreement.
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Figure 5.4: Comparison of macroscopic HCPDmodel simulation with the LE-VCFEM
simulation of RVE 1 of Figure 4.3(a) subject to instantaneous change of strain rate
from 0.25 s−1 to 0.75 s−1 at 0.6% applied strain.
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Figure 5.5: Comparison of macroscopic HCPDmodel simulation with the LE-VCFEM
simulation of RVE 1 of Figure 4.3(a) subject to instantaneous change of strain rate
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Figure 5.6: Macroscopic stress-strain response of the HCPD model and the homog-
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For validating the elliptical forms of the nucleation parameters A,B and C, a

number of LE-VCFEM simulations with different loading ratios (exx : eyy : exy ̸= 0)

were performed. The value of the parameter A is obtained from the ellipse shown in

Figure 4.8 and from the homogenized micromechanics response, the parameter C is

independently calibrated for different loading ratios. The independently calibrated

values of the parameter C is plotted along with the elliptical form of C calibrated in

Section 4.5 in Figure 5.7. From Figure 5.7, it is seen that the independently calibrated

values are close to the elliptical form and thus validates the functional forms of the

parameters A,B and C. Micromechanics simulations of RVE 1 for the two loading

ratios exx = −1 : eyy = 0.5 : exy = 0.5 and exx = −1 : eyy = 0.5 : exy = −0.5 show no

inclusion cracking. For these loading ratios, the value of A and C obtained from the

ellipses calibrated in Section 4.5 used with Equation 3.14 nad 3.17 gives a value of
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zero for the area fraction of cracked inclusion ρ. Thus the anisotropy parameters are

also capable of predicting loading conditions where no inclusion cracking happens.
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Figure 5.7: Parameter C for RVE 1 in Figure 4.3(a) along with the independently
calibrated values of C for different strain ratios exx : eyy = 0 : exy = 0

5.3 Dual-stage nested homogenization

The rate-dependent HCPD model, with the void nucleation and growth part

switched off is used for the macroscopic simulation of large secondary dendrite arm

spacing or SDAS cast aluminum alloy microstructures in [2]. Microstructures of these

alloys are characterized by extremely inhomogeneous distribution of inclusions along

the dendrite cell boundaries. Traditional single-step homogenization methods are not

suitable for this type of microstructure due to the size of the representative volume

element (RVE) and the associated computations required for micromechanical anal-

yses. To circumvent this limitation, two distinct statistically equivalent RVE’s are
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identified, corresponding to the inherent scales of inhomogeneity in the microstruc-

ture. The homogenization is performed in multiple stages for each of the RVE’s

identified. Asymptotic expansion homogenization (AEH) and Self consistent homog-

enization (SCH) are used in this method. Anisotropy and viscoplastic parameters

in for the different scales are calibrated from homogenization of micro-variables for

the different RVE’s as described in Section 4.1 - 4.3. The uniqueness of the nested

two-stage homogenization is that it enables evaluation of the overall homogenized

model of the cast alloy from limited experimental data, but also material properties

of constituents like inter-dendritic phase and pure aluminum matrix. The capabili-

ties of the HCP model are demonstrated for a cast aluminum alloy AS7GU having a

SDAS of 30 µ.m in [2].
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CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Summary

In this thesis, an accurate and computationally efficient rate-dependent homoge-

nization based continuum plasticity damage model is developed for the macroscopic

analysis of ductile fracture in heterogeneous porous ductile materials. The rate-

dependent HCPD model is an extension of the model developed by Ghosh et al.

[13] and follows the structure of an anisotropic Gursen-Tvergaard-Needleman elasto-

porous-plasticity model for ductile materials. Material anisotropy is determined by

the morphology of the microstructure, evolution of plastic deformation and damage.

This anisotropy in plastic behavior is modeled with a set of anisotropy parameters,

which evolve as a function of the plastic work. The entire rate-dependent HCPD

model is expressed in an evolving material principal coordinate system, in which the

material remains orthotropic throughout the deformation history. All of the model

parameters are calibrated from the homogenization of microstructural variables ob-

tained from LE-VCFEM simulations of the RVE.

The model also incorporates a unique rate-dependent void nucleation criterion

that is capable of effectively simulating the loss of load carrying capacity of hetero-

geneous materials that happens because of inclusion cracking and void growth. The
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model incorporates the effects of loading strain rates on damage by using two pa-

rameters which are a function of the local strain rate. The nucleation model also

incorporates the anisotropy in damage evolution using three parameters A,B and C,

which are rate-independent and can be calibrated at any loading strain rate. Numer-

ical examples are conducted for a variety of loading conditions, like different strain

rates, instantaneously varying strain rates and different loading ratios. In all the

cases, the rate-dependent HCPD model results show excellent agreement with the

homogenized micromechanics results. Above all the rate-dependent HCPD model

has a huge advantage in terms of efficiency over explicit micromechanics simulations

and hence is a very effective tool in making macroscopic damage predictions. These

plasticity and nucleation capability is largely lacking in literature.

6.2 Future Work

Macroscopic analysis using the HCPD model has considerable efficiency advantage

over explicit micromechanics simulations and hence the inclusion of such models in

multi-scale framework for efficient analysis is inevitable. But it is also important to

recognize the limitations of such homogenized models, especially the lack of accuracy

and detail when simulating critical regions of microstructures containing cracks and

highly localized damage evolution. Therefore implementation of the macroscopic

rate-dependent HCPD model in a multi-scale framework, such as the one described

in [28], followed by studies of error criterion and criterion for switching to lower scales

is necessary.
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